Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0286443, 2024.
Article in English | MEDLINE | ID: mdl-38236903

ABSTRACT

Transcranial direct current stimulation (tDCS) is used to modulate brain function, and can modulate motor and postural control. While the acute effect of tDCS is well documented on patients, little is still known whether tDCS can alter the motor control of healthy trained participants. This study aimed to assess the acute effect of tDCS on postural control of parkour practitioners, known for their good balance abilities and their neuromuscular specificities that make them good candidates for tDCS intervention. Eighteen parkour practitioners were tested on three occasions in the laboratory for each stimulation condition (2 mA; 20 minutes)-primary motor cortex (M1), dorsolateral prefrontal cortex (dlPFC) and sham (placebo). Postural control was evaluated PRE and POST each stimulation by measuring Center of Pressure (CoP) displacements on a force platform during static conditions (bipedal and unipedal stance). Following M1 stimulation, significant decreases were observed in CoP area in unipedal (from 607.1 ± 297.9 mm2 to 451.1 ± 173.9 mm2, P = 0.003) and bipedal (from 157.5 ± 74.1 mm2 to 117.6 ± 59.8 mm2 P<0.001) stances. As well, the CoP total length was significantly reduced in bipedal (from 3416.8 ± 295.4 mm to 3280.6 ± 306.2 mm, P = 0.005) as well as in unipedal stance (from 4259.6 ± 398.4 mm to 3846.5 ± 468.9 mm, P<0.001), only after M1 stimulation. Relative pre-post changes observed after M1 stimulation were negatively correlated to experience in parkour only after unipedal stance (r = 0.715, P<0.001), meaning that the more participants were trained the less tDCS was effective. No significant changes were noticed after sham and dlPFC stimulation. These results suggested that the modulation of gait performance in athletes following an acute intervention of tDCS is specific to the targeted brain region, and that postures with reduced base of support (such as unipedal stance) were more sensitive to tDCS.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Double-Blind Method , Postural Balance/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology
2.
Brain Sci ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063798

ABSTRACT

Risk-taking is part of the multidimensional nature of impulsivity, consisting of an active engagement in behaviors or choices with potentially undesirable results, with probability as the cost for an expected reward. In order to understand the neurophysiological activity during risky behavior and its relationship with other dimensions of impulsivity, we have acquired event-related-potential (ERP) data and self-reported impulsivity scores from 17 non-clinical volunteers. They underwent high-resolution electroencephalography (HR-EEG) combined with an adapted version of the Balloon Analogue Risk Task (BART), and completed the Barratt Impulsiveness Scale (BIS-10) and the Urgency, Premeditation, Perseverance, Sensation Seeking, Impulsive Behavior Scale (UPPS). The ERP components were sensitive to valence (FRN, P300) and risk/reward magnitude (SPN, RewP). Our main finding evidenced a positive correlation between the amplitude of the P300 component following positive feedback and both the global UPPS score and the (lack of) perseverance UPPS subscale, significant for several adjacent electrodes. This finding might suggest an adaptive form of impulsive behavior, which could be associated to the reduction on the difference of the P300 amplitude following negative and positive feedback. However, further investigation with both larger clinical and non-clinical samples is required.

3.
Sci Rep ; 11(1): 9731, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958679

ABSTRACT

In sports science, transcranial direct current stimulation (tDCS) has many unknown effects on neuromuscular, psychomotor and cognitive aspects. Particularly, its impact on power performances remains poorly investigated. Eighteen healthy young males, all trained in a jumping sport (parkour) performed three experimental sessions: anodal tDCS applied either on the left dorsolateral prefrontal cortex (dlPFC, cathode in supraorbital area) or on the primary motor cortex (M1, cathode on contralateral shoulder), and a placebo condition (SHAM), each applied for 20 min at 2 mA. Pre and post, maximal vertical and horizontal jumps were performed, associated to leg neuromuscular assessment through electromyography and peripheral nerve stimulations. Actual and imagined pointing tasks were also performed to evaluate fine motor skills, and a full battery of cognitive and psychomotor tests was administered. M1 tDCS improved jump performance accompanied by an increase in supraspinal and spinal excitabilities. dlPFC stimulation only impacted the pointing tasks. No effect on cognitive tests was found for any of the tDCS conditions. To conclude, the type of performance (maximal versus accurate) affected depended upon the tDCS montage. Finally, athletes responded well to tDCS for motor performance while results to cognitive tests seemed unaffected, at least when implemented with the present rationale.


Subject(s)
Cognition , Psychomotor Performance , Sports , Transcranial Direct Current Stimulation , Adolescent , Adult , Electroencephalography , Evoked Potentials , Humans , Male , Young Adult
4.
Trials ; 21(1): 461, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493462

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) is promising for improving motor and cognitive performance. Nevertheless, its mechanisms of action are unclear and need to be better characterised according to the stimulated brain area and the type of exercise performed. METHODS/DESIGN: This is a double-blind crossover study, organised into two parts: the first is to assess the effects of tDCS on explosive performance (jump task) and the second is to assess the effects on endurance performance (cycling time trial task). Participants, who are recreationally active or athletes (parkour practitioners, cyclists), will receive two active tDCS sessions (over the left dorsolateral prefrontal cortex and right motor cortex) and one sham tDCS session (part A), or two sequences (one active and one sham) of two daily tDCS sessions over 5 days (part B). Motor and cognitive performance will be compared before and after tDCS sessions (part A), and before and after the first session, after the last session and at day 12 and day 30 of each tDCS sequence (part B). DISCUSSION: This study investigates the acute and repeated effects of tDCS on the motor and cognitive performance of healthy subjects. It will try to evaluate if tDCS could be considered as a neuroenhancement technology according to the physical task investigated (endurance versus explosive). TRIAL REGISTRATION: ClinicalTrials.gov, NCT03937115. Registered on 3 May 2019; retrospectively registered.


Subject(s)
Athletic Performance/physiology , Exercise/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation , Athletes , Cross-Over Studies , Double-Blind Method , France , Humans , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...